Disposal of industrial wastewater and activities such as underground sequestration depend upon pressure conditions within deep geologic reservoirs. Sometimes, injection and storage are associated with induced seismicity, suggested to result from reservoir compartmentalization, leakage into faults, or other mechanisms in the subsurface. To understand subsurface pressure conditions within a major regional disposal reservoir, the Arbuckle Group of Oklahoma, we monitored the water levels in 15 inactive injection wells. The wells were monitored at 30‐s intervals, with eight wells monitored since September 2016, and an additional seven from July 2017. All the wells were monitored until early March 2020. Since 2016, hydraulic head decreased in 13 of the 15 wells, proportional to near‐borehole fluid pressure even considering decreasing regional injection volumes during this period. The well pressures respond to three types of perturbations: (i) gravitational fluctuations (a.k.a. solid‐earth tides) (ii) distal and proximal earthquakes, and (iii) injections into nearby wells. Parameterization of tidal responses illustrates that the near wellbore environments have negative fluid flux (i.e., are leaking). Earthquakes cause differing pressure responses from well to well, with some highly sensitive to proximal events, some to distal events, and some apparently insensitive. Injections have variable impacts in some cases masking tidal and earthquake pressure signals. Collectively, there appears to be a threshold injection rate above which well pressure becomes less sensitive to the volume of injections within 15 km. Multi‐scale geological structure and temporal permeability changes are likely controlling the pressure field, indicating leakage of fluids across the system.