Antibiotic tolerance, the ability of bacteria to sustain viability in the presence of typically bactericidal antibiotics for extended time periods, is an understudied contributor to treatment failure. The Gram-negative pathogen Vibrio cholerae, the causative agent of cholera disease, becomes highly tolerant to β-lactam antibiotics (penicillin and related compounds) in a process requiring the two-component system VxrAB. VxrAB is induced by exposure to cell wall damage conditions, which results in the differential regulation of >100 genes. While the effectors of VxrAB are relatively well-known, VxrAB environment-sensing and activation mechanisms remain a mystery. Here, we used transposon mutagenesis to screen for mutants that spontaneously upregulate VxrAB signaling. This screen was answered by genes known to be required for proper cell envelope homeostasis, validating the approach. Unexpectedly, we also uncovered a new connection between central carbon metabolism and antibiotic tolerance. Inactivation of pgi (vc0374, coding for Glucose-6-phosphate isomerase) resulted in an intracellular accumulation of glucose-6-phosphate and fructose-6-phosphate, concomitant with a marked cell envelope defect, resulting in VxrAB induction. Deletion of pgi also increased sensitivity to β-lactams and conferred a growth defect on salt-free LB; phenotypes that could be suppressed by deleting sugar uptake systems and by supplementing cell wall precursors in the growth medium. Our data suggest an important connection between central metabolism and cell envelope integrity and highlight a potential new target for developing novel antimicrobial agents.