As Earth's most influential naturally-recurring sea and atmospheric oscillation, ENSO results in widespread changes in the climate system not only over much of the tropics and subtropics, but also in high latitudes via atmospheric teleconnections. In the present study, the linkages between springtime vegetation greenness over Eurasia and El Niño are investigated based on two long-term normalized difference vegetation index (NDVI) datasets from 1982 to 2015, and possible physical mechanisms for the teleconnections are explored. Results from the Empirical Orthogonal Function (EOF) and Singular Value Decomposition (SVD) analyses consistently suggest that the spatial patterns of NDVI, with "negative-positive-negative" values, have closer connections to El Niño. In particular, East Russia is identified as the key region with the strongest negative influences from Eastern Pacific (EP) El Niño on spring vegetation growth. During EP El Niño years, suppressed convection over the Bay of Bengal (BoB) may excite a Rossby wave from the BoB to the Far East. East Russia is located in the west of a large cyclone anomaly accompanied by the strong North and Northwesterly wind anomalies and the transport of cold air from Siberia. As a result, surface air temperature decreases significantly over East Russia and thus inhibits the vegetation growth during spring in the EP El Niño years.