The Chibougamau pluton is a Neoarchean multiphase intrusion that is related to Cu–Au porphyry-style deposits. In Archean greenstone belts, porphyries are marginal and poorly documented mineralizations. Such deposits are, however, important in the Chibougamau area, where the main historical mining camp (Central Camp) is a magmato-hydrothermal system. Understanding such systems requires documenting the related magmatic rocks. This contribution focuses on the petrogenesis of the Chibougamau pluton to elucidate how the intrusion participated in Cu and Au mineralized systems. Using field descriptions, whole-rock analyses, and petrographic observations, we describe the source, emplacement mechanism, and chemical evolution of the Chibougamau pluton. The Chibougamau pluton is a TTD (tonalite-trondhjemite-diorite) suite that contains more K than most plutons of similar age. This suite was produced from a heterogeneous source; i.e., a hydrated basalt and possibly a metasomatized mantle. These are rare (and thus prospective) characteristics for an Archean intrusion. In addition, differentiation may have been sufficiently prolonged in the diorite phase to concentrate metals and fluids in the evolved magma. These magmatic constraints must now be tested against a renewed understanding of the Cu-dominated mineralized systems of the Chibougamau area.