Many of the constitutive peptide ligands of HLA-B27, a molecule strongly associated with spondyloarthritis, are proteasome-independent. Stable isotope tagging, mass spectrometry, and epoxomicin-mediated inhibition were used to determine their percentage, structural features, and parental proteins. Of 104 molecular species examined, 29.8% were proteasome-independent, paralleling the level of HLA-B27 re-expression in the presence of epoxomicin after acid stripping. Proteasome-dependent and -independent ligands differed little in peptide motifs, flanking sequences, and cellular localization of the parental proteins. In contrast, whereas the former set arose from proteins whose size and isoelectric point distribution largely reflected those in the human proteome, proteasome-independent ligands, other than a few matching signal sequences, were almost totally derived from small (about 6 -16.5 kDa) and basic proteins, which account for only 6.6% of the human proteome. Thus, a non-proteasomal proteolytic pathway with strong preference for small proteins is responsible for a significant fraction of the HLA-B27-bound peptide repertoire. Molecular & Cellular Proteomics 6:923-938, 2007.