Ubiquitin and ubiquitin-like (Ubl) modifiers such as SUMO are conjugated to substrate proteins by E1, E2, and E3 enzymes. In the presence of an E3 ligase, the E2∼Ubl thioester intermediate becomes highly activated and is prone to chemical decomposition, thus making biochemical and structural studies difficult. Here we explored a stable chemical conjugate of the E2 enzyme from the SUMO pathway, Ubc9, with its modifier SUMO1 as a structural analogue of the Ubc9∼SUMO1 thioester intermediate, by introducing a triazole linkage by biorthogonal click chemistry. The chemical conjugate proved stable against proteolytic cleavage, in contrast to a Ubc9-SUMO1 isopeptide analogue obtained by auto-SUMOylation. Triazole-linked Ubc9-SUMO1 bound specifically to the preassembled E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9, thus suggesting that it is a suitable thioester mimic. We anticipate interesting prospects for its use as a research tool to study protein complexes involving E2 and E3 enzymes.