Retinoblastoma in children and uveal melanoma in adults can pose a serious threat to both vision and life. For many decades, enucleation was often the only option to treat these intraocular malignancies. For retinoblastoma, intra-arterial chemotherapy is often utilized as the primary treatment at advanced academic centers and has dramatically improved local tumor control and eye salvage rates. For uveal melanoma, both plaque brachytherapy and proton beam irradiation have served as widely utilized therapies with a local failure rate of approximately 1–10%, depending on the series. Major recent advancements have allowed for a better understanding of the genomics of uveal melanoma and the impact of certain mutations on metastatic susceptibility. Gene expression profile stratifies uveal melanomas into two classes: low-risk (class 1) and high-risk (class 2). A loss-of-function mutation of
BAP1
is associated with a class 2 gene expression profile and therefore confers worse prognosis due to elevated risk of metastasis. On the other hand, gain-of-function mutations of
EIF1AX
and
SF3B1
correspond to a gene expression profile of class 1A and class 1B and confer a better prognosis. Preferentially expressed antigen in melanoma (PRAME) is an antigen that increases metastatic susceptibility when expressed in uveal melanoma cells. In addition to plaque brachytherapy and proton beam irradiation, both of which have demonstrated superb clinical outcomes, scientists are actively investigating newer therapeutic modalities as either primary therapy or adjuvant treatment, including a novel nanoparticle therapy and immunotherapy.