Background: This study aimed to investigate the effects of three-dimensional (3D) printed titanium (3DTi) scaffolds on osteogenic differentiation and new bone formation by 3D cultured adipose tissue-derived stem cells (ADSCs) in vitro, and the effects of bone regeneration in vivo using a full-thickness mandibular defect rat model, and the mechanisms involved. Material/Methods: Alpha-beta titanium alloy (Ti6Al4V) 3DTi scaffolds were prepared with Cellmatrix hydrogel and 3D culture medium. ADSCs were impregnated into the 3DTi scaffolds. ADSC viability and proliferation were assessed using the cell counting kit-8 (CCK-8) assay, and alkaline phosphatase (ALP) levels were measured. Real-time polymerase chain reaction (RT-PCR) and Western blot were performed to assess the expression of osteogenesisrelated mRNA for RUNX2, OPN, OCN, and IGF-1 genes and proteins. A rat model of full-thickness mandibular defect was evaluated with micro-computed tomography (microCT) scanning, and histochemistry with Alizarin red and von Giesen's stain were used to evaluate osteogenesis. Results: ADSC viability and proliferation were not affected by culture with 3DTi scaffolds. Expression of osteogenesisrelated mRNA and proteins for RUNX2, OPN, OCN, and IGF-1, expression of ALP, and histochemical findings showed that the use of 3DTi scaffolds enhanced osteogenic differentiation and new bone formation by ADSCs, with upregulation of components of the IGF-1R/AKT/mTORC1 pathway. Conclusions: The 3D culture of ADSCs with 3DTi scaffolds enhanced osteogenic differentiation and new bone formation through the IGF-1R/AKT/mTORC1 pathway. This improved method of osteointegration may have clinical application in the preparation of bone grafts before implantation for improved repair of mandibular bone defects.