Kif7 is a ciliary kinesin motor protein that regulates mammalian Hedgehog pathway activation through influencing structure of the primary cilium. Here we show that Kif7 is required for normal T-cell development, despite the fact that T-cells lack primary cilia. Analysis of Kif7-deficient thymus showed that Kif7-deficiency increases the early CD44+CD25+CD4-CD8- thymocyte progenitor population but reduces differentiation to CD4+CD8+ double positive (DP) cell. At the transition from DP to mature T-cell, Kif7-deficiency selectively delayed maturation to the CD8 lineage. Expression of CD5, which correlates with TCR signal strength, was reduced on DP and mature CD4 and CD8 cells, as a result of thymocyte-intrinsic Kif7-deficiency, and Kif7-deficient T-cells from radiation chimeras activated less efficiently when stimulated with anti-CD3 and anti-CD28 in vitro. Kif7-deficient thymocytes showed higher expression of the Hedgehog target gene Ptch1 than WT, but were less sensitive to treatment with recombinant Shh, and Kif7-deficient T-cell development was refractory to neutralisation of endogenous Hh proteins, indicating that Kif7-deficient thymocytes were unable to interpret changes in the Hedgehog signal. In addition, Kif7-deficiency reduced cell-surface MHCII expression on thymic epithelial cells.