The Liquid Phase Methanol Synthesis (LPMeOH TM ) process has been investigated in our laboratories since 1982. The reaction chemistry of liquid phase methanol synthesis over commercial Cu/ZnO/Al 2 O 3 catalysts, established for diverse feed gas conditions including H 2 -rich, CO-rich, CO 2 -rich, and CO-free environments, is predominantly based on the CO 2 hydrogenation reaction and the forward water-gas shift reaction. Important aspects of the liquid phase methanol synthesis investigated in this in-depth study include global kinetic rate expressions, external mass transfer mechanisms and rates, correlation for the overall gas-to-liquid mass transfer rate coefficient, computation of the multicomponent phase equilibrium and prediction of the ultimate and isolated chemical equilibrium compositions, thermal stability analysis of the liquid phase methanol synthesis reactor, investigation of pore diffusion in the methanol catalyst, and elucidation of catalyst deactivation/regeneration. These studies were conducted in a mechanically agitated slurry reactor as well as in a liquid entrained reactor. A novel liquid phase process for co-production of dimethyl ether (DME) and methanol has also been developed. The process is based on dual-catalytic synthesis in a single reactor stage, where the methanol synthesis and water gas shift reactions takes place over Cu/ZnO/Al 2 O 3 catalysts and the in-situ methanol dehydration reaction takes place over c-Al 2 O 3 catalyst. Co-production of DME and methanol can increase the single-stage reactor productivity by as much as 80%. By varying the mass ratios of methanol synthesis catalyst to methanol dehydration catalyst, it is possible to co-produce DME and methanol in any fixed proportion, from 5% DME to 95% DME. Also, dual catalysts exhibit higher activity, and more importantly these activities are sustained for a longer catalyst on-stream life by alleviating catalyst deactivation.