Road asphalt is comprised of aggregate (rocks) mixed with a binder composed of high-boiling petroleum-derived compounds, which have been thought to be relatively inert (unreactive) and thus leach small amounts of polyaromatic hydrocarbons (PAHs) into water from the built environment. However, recent studies have demonstrated that petroleum readily undergoes photooxidation and generates water-soluble oxygencontaining hydrocarbons. Therefore, here, we investigate the effects of solar irradiation on an asphalt binder. Upon irradiation in a photooxidation microcosm, thin films of the asphalt binder produce abundant oil-and water-soluble oxygenated hydrocarbons, which we hypothesize are also leached from roads and highways through photooxidation reactions. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables extensive compositional characterization of the virgin asphalt binder, irradiated asphalt binder, and the water-soluble photoproducts. The results reveal the production of water-soluble species that resemble the molecular composition of petroleum-derived dissolved organic matter, including abundant hydrocarbons and Scontaining species with up to 18 oxygen atoms. The results also confirm photo-induced oxidation, fragmentation, and potentially polymerization as active processes involved in the production of water-soluble organic pollutants from asphalt.