Previous studies reported that Fusobacterium nucleatum induced polyclonal B-lymphocyte activation (PBA) as determined by immunoglobulin M production in cultures of human peripheral blood mononuclear cells. However, the PBA response was greatly enhanced when the cells were depleted of esterase-positive, adherent cells (i.e., monocytes). The purpose of this study was to confirm and further examine the suppression of F. nucleatum-induced PBA (F. nucleatum-PBA) by blood monocytes. For comparison, PBA induced by pokeweed mitogen (PWM-PBA), which is enhanced by monocytes, was assessed in some experiments. We found the removal of monocytes from unfractionated cells by (i) Sephadex G-10, (ij) anti-monocyte specific OM-1 monoclonal antibody plus complement, or (iii) L-leucine methyl ester, a compound which selectively kills lysosome-rich cells, resulted in a population of cells responsive to F. nucleatum-PBA and unresponsive to PWM-PBA. The addition of double adherence-purified monocytes (>85% esterase-positive cells), particularly in concentrations of >10%, to lymphocytes depleted of monocytes by G-10, OM-1, or L-leucine methyl ester treatments, suppressed F. nucleatum-PBA and enhanced PWM-PBA. Monocytes also suppressed a mixture of isolated T and B cells combined in a T/B cell ratio of 3:1, which is an optimal ratio for F. nucleatum-PBA. Allogeneic monocytes suppressed F. nucleatum-PBA, although at low numbers these cells were not as