Cardiac resynchronization therapy (CRT) is believed to benefit patients by primarily correcting heterogeneity in regional ventricular mechanical contraction, known as dyssynchrony. Although many symptomatic heart failure patients with depressed left ventricular ejection fraction and widened electrocardiographic QRS complexes have clinical improvement from CRT, a significant subset of approximately one-third do not seem to respond. Because the degree of mechanical dyssynchrony may be widely variable, interest has remained high to attempt to improve patient selection for CRT using cardiac imaging as a means to quantify dyssynchrony. This article will review the principal echocardiographic methods of dyssynchrony analysis by tissue Doppler imaging, (opposing wall delay, 12-site standard deviation or Yu index, and longitudinal strain), routine pulsed-Doppler (interventricular mechanical delay, pre-ejection delay and filling time ratio), and speckle tracking (including radial, circumferential, and longitudinal strain). In addition, dyssynchrony analysis by cardiac magnetic resonance imaging is introduced as a potential alternative technique. The technical features, strengths and limitations, and clinical evidence for these methods are discussed, including a practical clinical approach.