Based on our research in ultrathin crystal structures performed so far, superlattices, Q-wires and Q-dots, we will consider the materials that can act as carriers for medicines and tagged substances. For this purpose we established a shell-model of ultrathin molecular crystals and investigated their dielectric, particularly optic characteristics. We conducted this research with the help of two-time dependent Green's function method, adjusted to ultrathin crystalline structure analysis. It is shown that specific resonant absorption lines appear in these structures, the number of which depends on crystal layers position and on values of parameters on shell-structure boundary surfaces. The absorption of electromagnetic radiation declines in infrared part and its detection is a relatively easy process.In this paper we will analyze application of nanomaterials in biomedicine, that is to say we will present the recent accomplishments in basic and clinical nanomedicine. Achieving full potential of nanomedicine may be years of even decades away, however, potential advances in drug delivery, diagnosis, and development of nanotechnology-related drugs start to change the landscape of medicine. Site-specific targeted drug delivery (made possible by the availability of unique delivery platforms, such as dendrimers, nanoparticles and nanoliposomes) and personalized medicine (result of the advance in pharmacogenetics) are just a few concepts on the horizon of research. In this paper, especially, we have analyzed the changes in basic physical properties of spherical-shaped nanoparticles that can be made in several (nano)layers and have, at the same time, multiple applications in medicine.