The biomimetic remineralization of collagen fibrils has increased interest in restoring the demineralized dentine generated by dental caries. Carboxyl-terminated polyamidoamine dendrimers (PAMAM-COOH), hyperbranched polymeric macromolecules, can act as non-collagenous proteins to induce biomimetic remineralization on a dentine organic matrix. However, in vivo remineralization is an extremely time-consuming process; before complete remineralization, demineralized dentine collagen fibrils are susceptible to degradation by host-derived matrix metalloproteinases (MMPs). Therefore, we examined the effect of fourth-generation PAMAM-COOH (G4-PAMAM-COOH) on the collagenolytic activities of endogenous MMPs, the interaction between G4-PAMAM-COOH and demineralized dentine collagen and the influence of G4-PAMAM-COOH pre-treatment on resin–dentine bonding. G4-PAMAN-COOH not only inhibited exogenous soluble rhMMP9 but also hampered the proteolytic activities of dentine collagen-bound MMPs. Cooperated with the results of G4-PAMAM-COOH absorption and desorption, FTIR spectroscopy provided evidence for the exclusive electrostatic interaction rather than hydrogen or covalent bonding between G4-PAMAM-COOH and dentine collagen. Furthermore, G4-PAMAM-COOH pre-treatment showed no damage to resin–dentine bonding because it did not significantly decrease the elastic modulus of the demineralized dentine, degree of conversion, penetration of the adhesive into the dentinal tubules or ultimate tensile strength. Thus, G4-PAMAM-COOH can effectively inactivate MMPs, retard the enzymolysis of collagen by MMPs and scarcely influence the application of resin–dentine bonding.