2The genome sequences of the basidiomycete Agaricomycetes species Coprinopsis cinerea, Laccaria bicolor, Schizophyllum commune, Phanerochaete chrysosporium, and Postia placenta, as well as of Cryptococcus neoformans and Ustilago maydis, are now publicly available. Out of these fungi, C. cinerea, S. commune, and U. maydis, together with the budding yeast Saccharomyces cerevisiae, have been investigated for years genetically and molecularly for signaling in sexual reproduction. The comparison of the structure and organization of mating type genes in fungal genomes reveals an amazing conservation of genes regulating the sexual reproduction throughout the fungal kingdom. In agaricomycetes, two mating type loci, A, coding for homeodomain type transcription factors, and B, encoding a pheromone/receptor system, regulate the four typical mating interactions of tetrapolar species. Evidence for both A and B mating type genes can also be identified in basidiomycetes with bipolar systems, where only two mating interactions are seen. In some of these fungi, the B locus has lost its self/nonself discrimination ability and thus its specificity while retaining the other regulatory functions in development. In silico analyses now also permit the identification of putative components of the pheromone-dependent signaling pathways. Induction of these signaling cascades leads to development of dikaryotic mycelia, fruiting body formation, and meiotic spore production. In pheromone-dependent signaling, the role of heterotrimeric G proteins, components of a mitogen-activated protein kinase (MAPK) cascade, and cyclic AMP-dependent pathways can now be defined. Additionally, the pheromone-dependent signaling through monomeric, small GTPases potentially involved in creating the polarized cytoskeleton for reciprocal nuclear exchange and migration during mating is predicted.
THE MATING SYSTEMS IN BASIDIOMYCETESThe typical life cycle of the higher basidiomycetes, presently classified as Agaricomycetes (Table 1) (34), consists of haploid, monokaryotic as well as dikaryotic stages, the latter of which prevails in nature. The monokaryotic mycelium contains nuclei of only one genetic type and is thus termed homokaryon. This mycelium, grown from haploid spores, in general contains one nucleus per cell (Fig. 1). The dikaryon is formed when genetically different homokaryons mate. In the saprotrophic agaricomycetes, the mushroom-forming species Schizophyllum commune and Coprinopsis cinerea (Table 1), mating is regulated by a tetrapolar system consisting of two unlinked genetic complexes, named A and B. The term tetrapolar reflects the fact that there are four possible mating interactions scored in matings between haploid strains derived from spores formed on the fruiting bodies of same parent dikaryon: a fully compatible interaction occurs when both A and B between the mates are of different specificities (Fig. 1), an incompatible interaction occurs when allelic specificities are all the same, and two semicompatible interactions occur when either A-o...