Background
Studies have shown that the high incidence of type 2 diabetes in China is associated with low birth weight and excessive nutrition in adulthood, which occurred during the famine years of the 1950s and 1960s, though the specific molecular mechanisms are unclear. In this study, we proposed a severe maternal caloric restriction during late pregnancy, followed by a post weaning high-fat diet in mice. After weaning, normal and high-fat diets were provided to mice to simulate the dietary pattern of modern society.
Methods
The pregnant mice were divided into two groups: normal birth weight (NBW) group and low birth weight (LBW) group. After 3 weeks for weaning, the male offspring mice in the NBW and LBW groups were then randomly divided into four subgroups: NC, NH, LC and LC groups. The offspring mice in the NC, NH, LC and LC groups were respectively fed with normal diet, normal diet, high-fat diet and high-fat diet for 18 weeks. After 18 weeks of dietary intervention, detailed analyses of mRNA and protein expression patterns, signaling pathway activities, and promoter methylation states were conducted for all relevant genes.
Results
After dietary intervention for 18 weeks, the expressions of CD36, Fabp4, PPARγ, FAS, and ACC1 in the skeletal muscle tissue of the LH group were significantly increased compared with the LC and NH groups (P < 0.05). The level of p-AMPK/AMPK in the skeletal muscle tissue of the LH group was significantly decreased compared with the LC and NH groups (P < 0.05). CPT1 and PGC-1α protein expressions were up-regulated in the LH group (P < 0.05) compared to the LC group. Additionally, the DNA methylation levels of the PGC-1α and GLUT4 gene promoters in the skeletal muscle of the LH groups were higher than those of the LC and NH groups (P < 0.05). However, PPARγ DNA methylation level in the LH group was lower than those of the LC and NH groups (P < 0.05).
Conclusions
LBW combined with high-fat diets may increase insulin resistance and diabetes through regulating the CD36-related Fabp4-PPARγ and AMPK/ACC signaling pathways.