Additional information is available at the end of the chapter 1. Bacterial double genetic system leads to genetic diversity and evolution Bacterial genome has unique dynamics, which evolve through a series of evolution. As the result of this evolutionary selection, bacteria have two genetic systems that are chromosomal and extrachromosomal genome. This genetic diversity is the cause for wide range of bacterial adaptation under diverse conditions. Bacteria get this genetic diversity through three processes that are mutation, recombination, and horizontal gene transfer (HGT). Both mutation and recombination is the natural alternation of genes, which has very little part in evolution but horizontal gene transfer alters the genes across the species, and this horizontal gene transfer totally depends on availability of extrachromosomal genome and good environmental conditions. The common mean of horizontal bacterial gene transfer happened through extrachromosomal DNA that is commonly called plasmids [1]. Plasmids are defined as circular or linear extrachromosomal replicons, which serve as important tools in manipulating and analyzing microorganisms through introduction, modification, or removal of target genes found in most bacteria. Plasmids are involved in pathogenicity, host specificity, resistance to antibiotics, and ultraviolet (UV) radiation. In addition to that, they function as toxins and hormones. Popular uses of plasmids are biotechnology and pharmaceuticals. In this chapter, we discussed plasmids as general classification, lifestyle, and role of plasmids playing in different areas of scientific importance. Plasmids modes of transfer, types, properties, and its usefulness for living organisms are also included briefly. 1.1. Plasmids Plasmids are circular or linear extrachromosomal replicons, which are found in many microorganisms in the domains Bacteria, Archaea, and Eukaryota. Also, plasmids are important vehicles for bacterial communication of genetic information, facilitating rapid evolution and