The interaction of oppositely and asymmetrically charged rods in salt-a simple model of (bio)macromolecular assembly-is observed via simulation to exhibit two free energy minima, separated by a repulsive barrier. In contrast to similar minima in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the governing mechanism includes electrostatic attraction at large separation, osmotic repulsion at close range, and depletion attraction near contact. A model accounting for ion condensation and excluded volume is shown to be superior to a mean-field treatment in predicting the effect of charge asymmetry on the free-energy profile.