Background: Sodium-glucose co-transporter 1 (SGLT1) may play a synergistic role in gluconeogenesis (GNG) and glucagon-like peptide-1 (GLP-1) expression. We proposed the hypothesis of a "SGLT1 bridge" as an indication for "surgical diabetes" that was preliminary validated in the present study.
Methods:We selected nonobese diabetic Goto-Kakizaki (GK) rats and Zuker diabetic fat (ZDF) rats to represent advanced and early diabetes, respectively. Based on glucose gavage with or without SGLT1 inhibitor phlorizin, the rats were divided into 4 groups: Gk-Glu, GK-P, ZDF-Glu, and ZDF-P. The expressions of SGLT1, GLP-1 receptor (GLP-1R), glucose-6 phosphatase (G6Pase), and phosphoenolpyruvate carboxykinase-1 (Pck1) were determined by immunohistochemistry (IHC) or quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the effects of phlorizin were analyzed.Results: Glucose tolerance was worse in GK rats and the homeostasis model assessment-insulin resistance (HOMA-IR) was higher in ZDF rats, indicating different pathophysiological conditions between the different diabetic rats. GK rats showed higher activity of duodenal SGLT1 (P=0.022) and jejunal SGLT1 mRNA expression (P=0.000) and lower SGLT1 mRNA expression in the liver (P=0.000) and pancreas (P=0.000). Phlorizin effectively inhibited the activity of duodenal SGLT1 in both GK rats (P=0.000) and ZDF rats (P=0.000). In ZDF rats, the expression of GLP-1R mRNA was downregulated in the jejunum (P=0.001) and upregulated in the pancreas (P=0.021) by phlorizin, but there were no regulatory effects on GLP-1R mRNA in the jejunum and pancreas of GK rats. As for the regulatory effects on GNG, phlorizin upregulated Pck1 mRNA in the duodenum (P=0.000) and the jejunum (P=0.038), whereas it downregulated hepatic G6Pase mRNA in ZDF rats (P=0.005) and Pck1 mRNA expression in GK rats (P=0.001), suggesting that SGLT1 inhibitor may have upregulated intestinal GNG in ZDF rats and downregulated hepatic GNG in both ZDF and GK rats.Conclusions: SGLT1 showed synergistic regulatory effects on the entero-insular axis (EIA) and the gut-brain-liver axis (GBLA), preliminarily validating the hypothesis of a "SGLT1 bridge". The distinct ^ ORCID: 0000-0003-0111-677X.