Most α-herpesviruses are pantropic, neuroinvasive pathogens that establish a reactivateable, latent infection in the PNS of their natural hosts. Various manifestations of herpes disease rely on extent and direction of the spread of infection between the surface epithelia and the nervous system components that innervate that surface. One aspect of such controlled spread of infection is the capacity for synaptically defined, transneuronal spread, a property that makes α-herpesviruses useful tools for determining the connectivity of neural circuits. The current understanding of intra-axonal transport and transneuronal spread of α-herpesviruses is reviewed, focusing on work with herpes simplex virus and pseudorabies virus, the available in vitro technology used to study viral transport and spread is evaluated and how certain viral mutants can be used to examine neural circuit architecture is described in this article.
Keywordsα-herpesvirus; axonal sorting; axonal transport; circuit tracing; herpes simplex virus; pseudorabies virus
Infection & neuroinvasion α-herpesvirusesThe α-herpesvirus subfamily consists of related dsDNA viruses, many of which have the unique capacity to establish a latent infection in the PNS ganglia of their natural hosts. These viruses include the well-studied human pathogens, herpes simplex virus (HSV)-1 and -2, as well as varicellazoster virus (VZV). For these viruses, humans are the only reservoir. The molecular biology of agricultural pathogens in the α-herpesvirus subfamily, including bovine herpesvirus, equine herpes virus and pseudorabies virus (PRV), is also understood in some detail. In this article, we focus on HSV-1 and PRV, which have provided in vivo and in vitro models for neural invasion and spread. Comparative virology of these viruses is interesting, both for the differences as well as the similarities that are revealed. While both are α-herpesviruses, well known differences exist between PRV and HSV-1 in host range (PRV infects essentially all mammals except higher primates, while the natural host range of HSV-1 is restricted to humans) and genome content. The genome of PRV is largely colinear with that of HSV-1 and other α-herpesviruses, except for a large internal inversion in the UL region situated between †Author for correspondence: