High-energy-conversion Bi 2 Te 3 -based thermoelectric generators (TEGs) are needed to ensure that the assembled material has a high value of average figure of merit (ZT ave ). However, the inferior ZT ave of the n-type leg severely restricts the large-scale applications of Bi 2 Te 3 -based TEGs. In this study, we achieved and reported a high peak ZT (1.33) of three-dimensional (3D)printing n-type Bi 2 Te 2.7 Se 0.3 . In addition, a superior ZT ave of 1.23 at a temperature ranging from 300 to 500 K was achieved. The high value of ZT ave was obtained by synergistically optimizing the electronic-and phonon-transport properties using the 3D-printing-driven defect engineering. The nonequilibrium solidification mechanism facilitated the multiscale defects formed during the 3D-printed process. Among the defects formed, the nanotwins triggered the energy-filtering effect, thus enhancing the Seebeck coefficient at a temperature range of 300−500 K. The effective scattering of wide-frequency phonons by multiscale defects reduced the lattice thermal conductivity close to the theoretical minimum of ∼0.35 W m −1 k −1 . Given the advantages of 3D printing in freeform device shapes, we assembled and measured bionic honeycombshaped single-leg TEGs, exhibiting a record-high energy conversion efficiency (10.2%). This work demonstrates the great potential of defect engineering driven by selective laser melting 3D-printing technology for the rational design of advanced n-type Bi 2 Te 2.7 Se 0.3 thermoelectric material.