Selective emission of green light phosphor powder Y4SiAlO8N as the host material and Tb3+ as the activator was successfully achieved using spray pyrolysis (SP). Samples synthesized with various calcination temperatures and precursor concentrations indicated that the most suitable parameter for the synthesized powder is the calcination of 0.05 M Y3.92SiAlO8N:0.08Tb3+ at a temperature of 1600 °C. The effect of the selected parameters was substantiated by the high purity of the Y3.92SiAlO8N:0.08Tb3+ phase, as confirmed by X-ray diffraction (XRD) analysis. The Scherrer equation was used to calculate grain size. In addition, scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS) confirmed the presence of micron-sized particles, which matched well with the theoretical chemical composition. The specific surface area of the phosphor powder was determined using the Brunauer–Emmett–Teller method. Finally, fluorescence spectrometry was used to determine the luminescence properties. The correlation between the crystallinity of the phosphor powder and narrowing emission is also discussed.