Both in cell culture and in vivo, keratinocytes that are migrating in response to a wound express enhanced levels of both urokinase-type plasminogen activator (uPA) and the uPA cell surface receptor (uPA-R). To explore the mechanism of this up-regulation, keratinocyte cultures were treated proir to wounding with a variety of metabolic and growth factor inhibitors in order to evaluate their effect on uPA and uPA-R expression. Actinomycin D and cycloheximide inhibited the up-regulation of both uPA and uPA-R, as determined by immunohistochemistry, indicating that RNA and protein syntheses are required for their induction in migrating keratinocytes. Neither removal of protein growth factors from the medium nor addition of inhibitory antibodies to a number of growth factors depressed uPA or uPA-R induction; these findings suggest that a variety of exogenous or endogenous growth factors [i.e., basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), amphiregulin, and tumor necrosis factor-alpha (TNF-alpha) do not have a critical role in the induction of uPA or uPA-R. In contrast, when protein kinase C (PKC) was either down-regulated with bryostatin 5 or inhibited with Ro31-8220 or staurosporine, the expression of both uPA and uPA-R was greatly decreased in migrating keratinocytes. Furthermore, pharmacologic activation of PKC enhanced uPA levels in non-wounded cultures. These data suggest that the enhanced expression of uPA and uPA-R in migrating keratinocytes is mediated by selective activation of PKC in these cells, perhaps secondary to alterations in the cytoskeleton induced by wounding. To test the requirement for uPA during keratinocyte migration in vitro, the extent of migration was quantified in the presence and absence of a variety of inhibitors in the wounded culture model. Migration was not altered by actinomycin D, cycloheximide, any of the above growth factor inhibitors, anti-uPA antibodies, a variety of inhibitors of uPA or plasmin enzymatic activity, or exogenous uPA. The independence of keratinocyte migration in vitro from uPA was further suggested by experiments which combined the phagokinetic assay of migration and the zymographic assay for pericellular uPA activity; no relationship was observed between pericellular uPA activity and the motility of individual cells.