2017
DOI: 10.1016/j.colsurfa.2017.04.055
|View full text |Cite
|
Sign up to set email alerts
|

Role of surface properties for the kinetics of bubble Ostwald ripening in saponin-stabilized foams

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

5
29
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 52 publications
(36 citation statements)
references
References 40 publications
5
29
0
2
Order By: Relevance
“…This second peak is due to dissolution of the ESCA molecule in the water, followed by transfer to the second interface, as confirmed by visual inspection of the MD trajectory. This behavior outlines the anionic form of escin as being much more water-soluble, which is in agreement with the experimental results indicating that the anionic form of escin is more soluble than the neutral one [13].…”
supporting
confidence: 91%
See 1 more Smart Citation
“…This second peak is due to dissolution of the ESCA molecule in the water, followed by transfer to the second interface, as confirmed by visual inspection of the MD trajectory. This behavior outlines the anionic form of escin as being much more water-soluble, which is in agreement with the experimental results indicating that the anionic form of escin is more soluble than the neutral one [13].…”
supporting
confidence: 91%
“…This compound is also a surfactant with some unusual adsorption characteristics. Escin adsorption layers feature extremely high surface elastic modulus and very low gas permittivity, which is important for the properties of foams and emulsions stabilized by this natural surfactant [12,13].…”
Section: Introductionmentioning
confidence: 99%
“…Despite this, surfactant foams tend to have a limited stability of only a few hours. Colloidal particles and certain proteins are extremely efficient in creating mechanically resistant surface layers to stop coalescence and coarsening all together (Gonzenbach et al, 2006;Salonen et al, 2016;Stocco et al, 2011;Tcholakova et al, 2008Tcholakova et al, , 2017. Particles can also gel or get stuck in the foam structure to block drainage (Bey et al, 2017;Guillermic et al, 2009;Haffner et al, 2014;Khidas et al, 2014;Louvet et al, 2010).…”
Section: Introductionmentioning
confidence: 99%
“…3 Procedure of single diamond eptaxial growth on Ir substrate [16,[60][61][62][63][64] 图 4 利用二次电子探测器观测到的 SEM 照片 [72] (a) BEN 过程后铱衬底表面形貌; (b) BEN 过程后铱衬底局部 表面形貌; (c)生长过程后同一位置形貌 Fig. 4 SEM images [72] of the iridium surface after BEN treatment (a), local spots after BEN (b) and after a subsequent growth step (c) 程即新金刚石晶核与形核阶段金刚石晶核的连接与 晶体尺寸增加过程。 比较常见的晶体材料的生长机制有奥斯特瓦尔 德熟化(Ostwald Ripening, OR) [73] 、定向附着生长 (Oriented Attachment, OA) [74] 和 柯 肯 达 尔 效 应 (Kirkendall Effect, KE) [75] 等。定向附着生长是团簇 沿着特定的晶向聚集并最终形成单晶或孪晶的过程, 具有非随机性 [76] 。由于金刚石在 Ir 衬底上较高的形 核密度, 金刚石生长的最初阶段更倾向于 OA 生长 机制, 可以认为定向附着生长即为金刚石缓慢生长 阶段的微观机理。 Li 等 [77] 首次利用透射电子显微镜观测到液体 中晶粒的定向附着生长过程, 如图 5 所示。 Dong 等 [69] 在外延薄膜中观测到薄膜和过渡层晶粒的拓扑衍生 定向附着生长现象, 如图 3(c1)所示。Dideikin 等 [78] 以爆轰法制备的纳米金刚石为原料, 在高温高压条 件下, 纳米金刚石颗粒相接触并发生倾斜、 旋转, 每 两个颗粒的相同晶面通过悬挂键相连接, 最终形成 1.5 μm 的单晶金刚石颗粒, 从而验证了固体颗粒之 间的定向附着生长机制。但是对于金刚石在形核生 长过程中的原位过程还缺少相应的研究仪器和研究 方法, 以至于金刚石的生长过程难以通过直观的方 法进行观测。 定向附着生长过程中, 晶界湮没形成金刚石单 晶是小角度晶界形成的楔形向错所导致的。 图 3(c2) 为立方晶中的小角晶界及部分形成楔形向错的结构 示意图, 楔形向错对应于一个不完整的倾斜晶界 [70] 。 可以推出晶粒尺寸 R 和晶界转变为楔形向错的临界 角 ω crit 之间的关系为 [32] :…”
Section: 金刚石的生长过程unclassified