On glacial‐interglacial time scales, changes in the Earth's orbital configuration control climate seasonality and mean conditions. Tropical coral skeletons can be sampled at a sufficient resolution to reconstruct past seasonality. Here, last deglacial Porites skeletons from Integrated Ocean Drilling Program Expedition 310 to Tahiti are investigated and, supported by a modern calibration, monthly resolved time series in geochemical proxies (Sr/Ca, δ18O, δ13C) are constructed. For most of the deglaciation, Sr/Ca seasonality was similar to modern (0.139 ± 0.010 mmol mol−1; 2.8 ± 0.2°C) reflecting the small change in insolation seasonality. However, during the Younger Dryas, high values in Sr/Ca seasonality (0.171 ± 0.017 mmol mol−1; 3.4 ± 0.3°C) suggest a reduced mixed layer depth and enhanced influence of the South Pacific Subtropical Gyre due to South Pacific Convergence Zone (SPCZ) inactivity. Furthermore, high amplitudes in Younger Dryas skeletal δ18O (0.40 ± 0.22 ‰) and δ13C (0.86 ± 0.22 ‰) seasonality compared to modern (δ18O = 0.29 ± 0.08 ‰; δ13C = 0.27 ± 0.08 ‰) point to elevated winter‐summer discrepancies in rainfall and runoff. Mean coral Sr/Ca variability suggests an influence of Northern Hemisphere climate events, such as the Younger Dryas cooling (+0.134 ± 0.012 mmol mol−1;−2.6 ± 0.2°C), or the Bølling–Allerød warming (+0.032 ± 0.040 mmol mol−1; −0.6 ± 0.4°C). Deglacial mean coral Δδ18O (δ18Oseawater contribution to skeletal δ18O), corrected for the ice volume effect, was elevated pointing to more saline, thus dryer conditions, likely due to a northward migration of the SPCZ. Seasonal cycles in coral δ13C were likely caused by variations in linear extension rates that were reduced during the last deglaciation (1.00 ± 0.6 cm year−1) compared to today (1.6 ± 0.3 cm year−1).