The surface reactivity of two copper-containing precursors, (Cu(hfac) 2 and Cu(hfac)VTMS, where hfac is hexafluoroacetyloacetonate and VTMS is vinyltrimethylsilane), was investigated by dosing the precursors onto a surface of highly ordered pyrolytic graphite (HOPG) at room temperature. The behavior of these precursors on a pristine HOPG was compared to that on a surface activated by ion sputtering and subsequent oxidation to induce controlled surface defects. X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy were used to confirm copper deposition and its surface distribution, and to compare with the results of scanning electron microscopy and atomic force microscopy investigations. As expected, surface defects promote copper deposition; however, the specific structures deposited depend on the deposition precursor. Density functional theory was used to mimic the reactions of each precursor molecule on this surface and to determine the origins of this different reactivity. Published by AIP Publishing. [http://dx