The homeostatic balance of the gastrointestinal tract relies on a single layer of epithelial cells, which assumes both digestive and protective functions. Enteric pathogens, including enteropathogenic Escherichia coli (EPEC), have evolved numerous mechanisms to disrupt basic intestinal epithelial functions, promoting the development of gastrointestinal disorders. Despite its non-invasive nature, EPEC inflicts severe damage to the intestinal mucosa, including the dysregulation of water and solute transport and the disruption of epithelial barrier structure and function. Despite the high prevalence and morbidity of disease caused by EPEC infections, the etiology of its pathogenesis remains incompletely understood. This review integrates the newest findings on EPEC-epithelial interactions with established mechanisms of disease in an attempt to give a comprehensive understanding of the cellular processes whereby this common pathogen may cause diarrheal illness.