The genome of the Mastreviruses encodes a replication-associated protein (RepA) that interacts with members of the plant retinoblastoma-related protein family, which are putative cell cycle regulators. Expression of ZmRb1, a maize retinoblastoma-related gene, and RepA inhibited and stimulated, respectively, cell division in tobacco cell cultures. The effect of RepA was mitigated by over-expression of ZmRb1. RepA increased transformation frequency and callus growth rate of high type II maize germplasm. RepA-containing transgenic maize calli remained embryogenic, were readily regenerable, and produced fertile plants that transmitted transgene expression in a Mendelian fashion. In high type II, transformation frequency increased with the strength of the promoter driving RepA expression. When a construct in which RepA was expressed behind its native LIR promoter was used, primary transformation frequencies did not improve for two elite Pioneer maize inbreds. However, when LIR:RepA-containing transgenic embryos were used in subsequent rounds of transformation, frequencies were higher in the RepA؉ embryos. These data demonstrate that RepA can stimulate cell division and callus growth in culture, and improve maize transformation.