Human diploid fibroblasts (HDF) have a finite life span in cell culture which can be extended when transformed with simian virus 40 (SV40). Flow cytometric analysis of SV40-HDF transformation allowed DNA content changes to be correlated with the appearance, quantity, and distribution of T antigen, p53, and V antigen, three proteins associated with this process. These studies demonstrated a shift in the DNA content to tetraploidy, which was correlated with the age of the SV4O-HDF but not the time of infection. A significant increase of the epitope recognized by PAbl22 to host p53 and the epitope PAblOl to SV40 T antigen occurred at the same time the tetraploid population appeared. However, an antigen reactive with SV40 V antibody was present at high levels in most of the population early after infection, but the levels declined with time. The percentage of PAblOl-T antigen-positive cells increased more rapidly in cells infected at a late passage, and this was concomitant with the shift in DNA content to tetraploid. Analysis of the mean fluorescence of total, gated populations (GI, G2, and > Gt) demonstrated that a threshold level of p53 and T antigen was reached in each compartment of the cell cycle. As the transformed phenotype appeared, a population of cells was continually released into the supernatant, and although these cells had a DNA pattern similar to the monolayer cells, the T antigen and p53 levels were 3-5 times higher in the tetraploid 6 2 cells.These studies correlated the expression of proteins associated with viral transformation in HDF which vary with time and shift in DNA content.