Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-β-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-β-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.