IntroductionA single type A1 spermatogonium (diploid, 2n) in rodents, such as rats and mice, gives rise to 256 mature spermatids (haploid, n) in the seminiferous epithelium during spermatogenesis (for reviews, see de Kretser and Kerr, 1988;Cheng and Mruk, 2002;Lui et al., 2003b). For this event to happen, preleptotene and leptotene spermatocytes must traverse the blood-testis barrier (BTB, also known as the seminiferous epithelium barrier) at late stage VIII and early IX of the epithelial cycle (Russell, 1977). The BTB is constituted largely by inter-Sertoli cell tight junctions (TJ). However, cellcell actin-based adherens junctions (AJ, e.g. ectoplasmic specialization, a testis-specific AJ type) and possibly cell-cell intermediate filament-based desmosome-like junctions (for reviews, see de Kretser and Kerr, 1988;Pelletier, 2001;Cheng and Mruk, 2002), are also found at the BTB site. As such, these junctions must undergo extensive restructuring during this process of germ cell migration. Yet the mechanism(s) that regulates BTB dynamics remains largely unknown (for a review, see Cheng and Mruk, 2002).Recently completed in vitro studies have shown that Sertoli cell TJ dynamics are regulated, at least in part, by transforming growth factor-β3 (TGF-β3) (Lui et al., 2001;Lui et al., 2003a) and tumor necrosis factor-α (TNF-α) (Siu et al., 2003a) via the TGF-β3/MEKKs/p38 mitogen activated protein (MAP) kinase and the TNF-α/integrin-linked kinase (ILK)/p130 Crkassociated substrate (Cas)/MAP kinase signaling pathways, respectively. More importantly, a preliminary in vivo study has shown that the event of BTB disruption induced by cadmium chloride (CdCl2) indeed was mediated via the TGF-β3/MEKKs/p38 MAP kinase pathway (Lui et al., 2003d). Yet it remains to be determined whether proteases, protease inhibitors, AJ integral membrane proteins and their associated peripheral adaptors, and signaling molecules are also involved in TJ restructuring and, in particular, the subsequent germ cell loss from the epithelium as a result of BTB damage. In brief, in this study we sought to investigate whether a primary loss of the BTB function can lead to a secondary disruption of the AJs. We also investigated the roles of proteases and protease inhibitors in this event, since recent in vitro studies have shown that AJ dynamics in the testis are regulated by the intricate interactions between proteases and protease inhibitors under An induction of α α 2-macroglobulin (a non-specific protease inhibitor) was also observed during BTB damage and when the seminiferous epithelium was being depleted of germ cells. These data illustrate that a primary disruption of the BTB can lead to a secondary loss of cell adhesion function at the site of AJs, concomitant with an induction in protease inhibitor, which apparently is used to protect the epithelium from unwanted proteolysis. α α 2-Macroglobulin was also shown to associate physically with TGF-β β3, afadin and nectin 3, but not occludin, E-cadherin or N-cadherin, indicating its possible role in jun...