Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2 ؊/؊ mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88-and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88 ؊/؊ and TRIF ؊/؊ mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4 ؊/؊ eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease.
Bacillus cereus is a Gram-positive, spore-forming, and beta-hemolytic soil bacterium (1). Commonly identified as a causative agent of foodborne illnesses, B. cereus is also associated with a multitude of clinical conditions, such as central nervous system infections (2), pneumonia (3), endocarditis (4), and gas-gangrene-like cutaneous infections (5). B. cereus also causes a virulent form of endophthalmitis, an intraocular inflammatory condition resulting from the introduction of microorganisms into the posterior segment of the eye following surgery or injury or from a distant site of infection. This infection causes irreversible damage to the retina, often leading to vision loss within 1 or 2 days (6). Typically, B. cereus endophthalmitis occurs following a penetrating eye injury (posttraumatic) with retained intraocular foreign bodies (7, 8) but has also been reported in postoperative patients (9-11). Fewer than 30% of posttraumatic B. cereus endophthalmitis patients retained useful vision, and out of these, only 9% retained 20/70 vision or better (7, 12). Moreover, 48% of B. cereus and other Bacillus species infections required evisceration or enucleation of the eye despite therapeutic intervention (7, 12). Intraocular inflammation that occurs during B. cereus endophthalmitis interferes with the clarity of the visual axis, contributing to disruption...