By comparing mRNA profiles in cultured fibroblasts from patients affected with lysosomal storage diseases, we identified differentially expressed genes common to these conditions. These studies, confirmed by biochemical experiments, demonstrated that lysosomal storage is associated with downregulation of ubiquitin C-terminal hydrolase, UCH-L1 in the cells of eight different lysosomal disorders, as well as in the brain of a mouse model of Sandhoff disease. Induction of lysosomal storage by the cysteine protease inhibitor E-64 also reduced UCH-L1 mRNA, protein level and activity. All cells exhibiting lysosomal storage contained ubiquitinated protein aggregates and showed reduced levels of free ubiquitin and decreased proteasome activity. The caspase-mediated apoptosis in E-64-treated fibroblasts was reversed by transfection with a UCH-L1 plasmid, and increased after downregulation of UCH-L1 by siRNA, suggesting that UCH-L1 deficiency and impairment of the ubiquitin-dependent protein degradation pathway can contribute to the increased cell death observed in many lysosomal storage disorders.