We report physiological and anatomical characteristics of water transport across roots grown in soil of two cultivars of grapevine (Vitis vinifera) differing in response to water stress (Grenache, isohydric; Chardonnay, anisohydric). Both cultivars have similar root hydraulic conductances (L o ; normalized to root dry weight) that change diurnally. There is a positive correlation between L o and transpiration. Under water stress, both cultivars have reduced minimum daily L o (predawn) attributed to the development of apoplastic barriers. Water-stressed and well-watered Chardonnay had the same diurnal change in amplitude of L o , while water-stressed Grenache showed a reduction in daily amplitude compared with well-watered plants. Hydraulic conductivity of root cortex cells (L pcell ) doubles in Chardonnay but remains unchanged in Grenache. Of the two most highly expressed plasma membrane intrinsic protein (PIP) aquaporins in roots (VvPIP1;1 and VvPIP2;2), only VvPIP2;2 functions as a water channel in Xenopus laevis oocytes. VvPIP1;1 interacts with VvPIP2;2 to induce 3-fold higher water permeability. These two aquaporins are colocated in the root from in situ hybridization and immunolocalization of VvPIP1 and VvPIP2 subfamily members. They occur in root tip, exodermis, root cortex (detected up to 30 mm), and stele. VvPIP2;2 mRNA does not change diurnally or with water stress, in contrast to VvPIP1;1, in which expression reflects the differences in L o and L pcell between cultivars in their responses to water stress and rewatering. VvPIP1;1 may regulate water transport across roots such that transpirational demand is matched by root water transport capacity. This occurs on a diurnal basis and in response to water stress that corresponds to the difference in drought tolerance between the cultivars. Root hydraulic conductance is usually lowest within the liquid component of the soil-plant-air continuum. The hydraulic conductance of roots can be highly variable in both time and space, which will affect soilwater extraction and shoot water status (Steudle and Peterson, 1998;Steudle, 2000aSteudle, , 2000b. Steudle (2000aSteudle ( , 2000b explains variation in root hydraulic conductivity (L p ; hydraulic conductance normalized to root surface area) in terms of the composite transport model based on the composite anatomical structure of roots, where water can move radially toward the xylem along three pathways: the apoplastic, symplastic, and transcellular. The symplastic and transcellular pathways are difficult to separate experimentally and are collectively considered as the cell-to-cell pathway (Steudle, 2000b). The extent to which water flow predominates in either pathway varies according to the relative hydraulic conductances of the pathways and the relative magnitude of hydrostatic versus osmotic gradients (Steudle, 2000a; Bramley et al., 2007b). Apoplastic flow can be altered irreversibly by anatomical changes, including Casparian bands and suberin lamellae (Steudle and Peterson, 1998). The conductance of the cell...