N-acetylglucosaminyltransferase V (Mgat5 or GnT-V) is an enzyme that catalyzes β1–6 branching of N-acetylglucosamine on asparagine (N)-linked oligosaccharides (N-glycan) of cell proteins. The levels of Mgat5 glycan products commonly are increased in malignancies. Although Mgat5 is known to be important in tumor metastases, the effects of Mgat5 on host immune responses are not fully defined. In this study, a Mgat5 specific-short hairpin RNA (shRNA) vector was transfected into murine mammary adenocarcinoma MA782 cells to assess the effects of Mgat5 on tumor cell growth, T cells, and macrophages following inoculation of mice with shRNA-transfected cancer cells. The results showed that blocking expression of Mgat5-modified glycans in MA782 cells significantly suppressed tumor progression both in vivo and in vitro, strongly stimulated Th1 cytokine production, and enhanced opsonophagocytic capability of macrophages in vivo. Importantly, reduction of complex N-glycans on MA782 tumor cells by Mgat5-shRNA resulted in significantly increased proliferation and CD45 surface expression of CD4+ T cells. Our data suggest Mgat5-shRNA could serve as a useful tool to treat breast cancer as well as a powerful tool for the functional investigation of N-glycans and glycoprotein synthesis. Our data suggest that knockdown of Mgat5 inhibits breast cancer cells’ growth with activation of CD4+ T cells and macrophages.