The objective of this study was to model a typical dairy waste stream, monitor the chemical and bacterial population dynamics that occur during aerobic or anaerobic treatment and subsequent storage in a simulated lagoon, and compare them to those of waste held without treatment in a simulated lagoon. Both aerobic and anaerobic treatment methods followed by storage effectively reduced the levels of total solids (59 to 68%), biological oxygen demand (85 to 90%), and sulfate (56 to 65%), as well as aerobic (83 to 95%), anaerobic (80 to 90%), and coliform (>99%) bacteria. However, only aerobic treatment reduced the levels of ammonia, and anaerobic treatment was more effective at reducing total sulfur and sulfate. The bacterial population structure of waste before and after treatment was monitored using 16S rRNA gene sequence libraries. Both treatments had unique effects on the bacterial population structure of waste. Aerobic treatment resulted in the greatest change in the type of bacteria present, with the levels of eight out of nine phyla being significantly altered. The most notable differences were the >16-fold increase in the phylum Proteobacteria and the approximately 8-fold decrease in the phylum Firmicutes. Anaerobic treatment resulted in fewer alterations, but significant decreases in the phyla Actinobacteria and Bacteroidetes, and increases in the phyla Planctomycetes, Spirochetes, and TM7 were observed.