The reprogramming of metabolism is one of cancer hallmarks. Glucose’s metabolism, as one of the main fuels of cancer cells, has been the focus of several research studies in the oncology field. However, because cancer is a heterogeneous disease, the disruptions in glucose metabolism are highly variable depending of the cancer. In fact, Renal Cell Carcinoma (RCC) and Prostate Cancer (PCa), the most lethal and common urological neoplasia, respectively, show different disruptions in the main pathways of glucose catabolism: glycolysis, lactate fermentation and Krebs Cycle. Oxidoreductases are a class of enzymes that catalyze electrons transfer from one molecule to another and are present in these three pathways, posing as an opportunity to better understand these catabolic deregulations. Furthermore, nowadays it is recognized that their expression is modulated by microRNAs (miRNAs), in this book chapter, we selected the known miRNAs that directly target these oxidoreductases and analyzed their deregulation in both cancers. The characterization of these miRNAs opens a new door that could be applied in patients’ stratification and therapy monitorization because of their potential as cancer biomarkers. Additionally, their delivery to cancer cells, using glucose capped NPs could help establish new therapeutic strategies that would improve RCC and PCa management.