Oxycodone, a semisynthetic opioid analgesic, is frequently prescribed for the management of pain. Side effects of nausea and emesis affect patient compliance and limit its therapeutic use. The present study established that an antinociceptive dose of oxycodone (15 mg/kg; oral) induces the pica response. We found sex differences in the temporal course of pica, with females having a longer duration. Opioid receptors mediated the pica response, as 1.0 mg/kg naloxone transiently attenuated and 2.0 mg/kg naloxone blocked pica. A -selective antagonist failed to block the response, suggesting mediation by opioid receptor. For further validation, we used the well established kaolin intake model to assess pica with the chemotherapeutic drug cisplatin as a positive control. Oxycodone and cisplatin significantly increased kaolin intake 4-to 7-fold, and the wet weight of stomach was elevated 2-to 3-fold. To examine the underlying neural circuitry, we investigated c-fos activation in the area postrema and nucleus of solitary tract (NTS). Oxycodone treatment significantly increased the number of c-fos-positive neurons in the area postrema and NTS compared with water controls. As expected, cisplatin also increased the number of c-fos-positive cells in these regions. In the area postrema, the oxycodone effect was greater than cisplatin, especially at 2 h. These results indicate that an antinociceptive dose of oxycodone is associated with the expression of pica, a pro-emetic response.