In a previous communication, our efforts leading from 1 to the identification of spiro [cyclohexanedihydropyrano[3,4-b]indole]-amine 2a as analgesic NOP and opioid receptor agonist were disclosed and their favorable in vitro and in vivo pharmacological properties revealed. We herein report our efforts to further optimize lead 2a, toward trans-6′-, which is currently in clinical development for the treatment of severe chronic nociceptive and neuropathic pain. KEYWORDS: NOP receptor agonists, MOP receptor agonists, cebranopadol, analgesics R ecent publications indicate that small molecules activating both nociceptin/orphanin FQ peptide (NOP) and mu opioid peptide (MOP) receptors may potentiate opiate analgesia and at the same time display an improved side effects profile. 1,2 We have recently reported the discovery of a series of small molecules, characterized by their high NOP and opioid receptor agonistic activity. 3 This series included uncyclized (e.g., 1) as well as spirocyclic examples (e.g., 2a). The discovery of spirocyclic 2a originated from the respective uncyclized analogues, which were potent NOP and MOP receptor binders but sometimes hampered by only partial agonistic NOP and MOP receptor activity. In particular, the spiroindole derivates sparked our interest due to their structural novelty and favorable in vitro and in vivo properties. The leading spiroether 2a exhibited strong efficacy in preclinical models of acute (ED 50 rat tail-flick: 3.63 nmol/kg i.v.) and neuropathic pain (ED 50 rat spinal nerve ligation: 1.05 nmol/kg i.v.) but was hampered by poor pharmacokinetic (PK) properties in rats with high clearance, large volume of distribution, moderate half-life (Cl = 4.0 L/h·kg; V ss = 7.52 L/kg; t 1/2 = 1.6 h), and a critically very low oral bioavailability (F = 4%).We herein report our efforts to further optimize the spiroindole lead 2a, which eventually led to the discovery of trans-6′-fluoro-4′,9′-dihydro-N,N-dimethyl-4-phenyl-spiro-[cyclohexane-1,1′(3′H)-pyrano [3,4-b]indol]-4-amine (3a, cebranopadol), a novel potent analgesic NOP and opioid receptor agonist, currently in clinical development for the treatment of severe chronic nociceptive and neuropathic pain.The structure−activity relationship (SAR) established around the uncyclized scaffolds (e.g., 1) suggested that a broad variety of linkers such as alcohols, ethers, and amines are tolerated, showing high NOP and MOP receptor binding affinities. 3 As a result, we applied this knowledge through analogous structural variations to lead structure 2a (region A, Figure 1). These changes were also combined with a targeted approach to improve the poor PK profile, in particular by addressing metabolically liable regions B and C.With this in mind, the transformation of the oxacyclic spiro moiety into a carba-, aza-, or thio-cyclic moiety was investigated. Advancing from the oxacyclic spiro 2a to the azacyclic moiety 5a led to equally potent NOP and MOP receptor binders, as well as the introduction of the N-methyl subunit 6a. Similarly, pot...