2024
DOI: 10.1155/2024/3293579
|View full text |Cite
|
Sign up to set email alerts
|

Rolling Bearing Fault Diagnosis under Strong Background Noise Based on ACMD and Optimized MOMEDA

Jia Shi,
Feng Wang,
Yufeng Huang
et al.

Abstract: A method based on adaptive chirp mode decomposition (ACMD) and optimized multipoint optimal minimum entropy deconvolution adjusted (OMOMEDA) is proposed to diagnose the rolling bearing fault in the presence of strong background noise. First, ACMD based on the Gini index is used to separate the low resonance impulse component in the fault signal from the harmonic component and noise. After ACMD, the OMOMEDA process is performed on the low resonance impulse component to enhance the fault impulse. After OMOMEDA, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?