Rolling Bearing Fault Diagnosis under Strong Background Noise Based on ACMD and Optimized MOMEDA
Jia Shi,
Feng Wang,
Yufeng Huang
et al.
Abstract:A method based on adaptive chirp mode decomposition (ACMD) and optimized multipoint optimal minimum entropy deconvolution adjusted (OMOMEDA) is proposed to diagnose the rolling bearing fault in the presence of strong background noise. First, ACMD based on the Gini index is used to separate the low resonance impulse component in the fault signal from the harmonic component and noise. After ACMD, the OMOMEDA process is performed on the low resonance impulse component to enhance the fault impulse. After OMOMEDA, … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.