2021
DOI: 10.1155/2021/5575497
|View full text |Cite
|
Sign up to set email alerts
|

Rolling Bearing Fault Vibration Signal Denoising Based on Adaptive Morphological Wavelet Perona–Malik Filter Algorithm

Abstract: This paper proposes an adaptive Perona–Malik filtering algorithm based on the morphological Haar wavelet, which is used for vibration signal denoising in rolling bearing fault diagnosis with strong noise. First, the morphological Haar wavelet operator is utilized to presmooth the noisy signal, and the gradient of the presmooth signal is estimated. Second, considering the uncertainty of gradient at the strong noise point, a strong noise point recognition operator is constructed to adaptively identify the strong… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?