To accurately reveal rolling bearing operating status, multi-feature entropy distance method was proposed for the process character analysis and diagnosis of rolling bearing faults by the integration of four information entropies in time domain, frequency domain and time–frequency domain and two kinds of signals including vibration signals and acoustic emission signals. The multi-feature entropy distance method was investigated and the basic thought of rolling bearing fault diagnosis with multi-feature entropy distance method was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner ball faults, inner–outer faults and normal) are gained under different rotational speeds. In the view of the multi-feature entropy distance method, the process diagnosis of rolling bearing faults was implemented. The analytical results show that multi-feature entropy distance fully reflects the process feature of rolling bearing faults with the change of rotating speed; the multi-feature entropy distance with vibration and acoustic emission signals better reports signal features than single type of signal (vibration or acoustic emission signal) in rolling bearing fault diagnosis; the proposed multi-feature entropy distance method holds high diagnostic precision and strong robustness (anti-noise capacity). This study provides a novel and useful methodology for the process feature extraction and fault diagnosis of rolling element bearings and other rotating machinery.