Quantum oxide materials possess a vast range of properties stemming from the interplay between the lattice, charge, spin and orbital degrees of freedom, in which electron correlations often play an important role. Historically, the spin-orbit coupling was rarely a dominant energy scale in oxides. It however recently came to the forefront, unleashing various exotic phenomena connected with real and reciprocal-space topology that may be harnessed in spintronics. In this article, we review the recent advances in the new field of oxide spin-orbitronics with a special focus on spin-charge interconversion from the direct and inverse spin Hall and Edelstein effects, and on the generation and observation of topological spin textures such as skyrmions.We highlight the control of spin-orbit-driven effects by ferroelectricity and give perspectives for the field.