The electrical and galvanomagnetic properties of zinc oxide films with and without gallium, aluminum, and cobalt doping and of tin-doped indium oxide films are studied over a wide range of temperatures and magnetic fields. It is shown that the mechanism for electron transport in these films changes from band to hopping transport as the degree of crystallinity of the films is reduced because of the methods and conditions for their synthesis. The change in the dimensionality of the films with band electron transport at low temperatures is studied in terms of the weak localization induced by a magnetic field. The localization radius and density of electron states in the Fermi level are estimated for the films with a hopping electron transport.