In this study, in order to provide proper parameters for the preparation of semisolid billets, the semisolid annealing of hot-rolled 2A14 Al alloy was investigated. The microstructure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an X-ray energy dispersive spectrometer (EDS) and electron backscattered diffraction (EBSD), and scanning transmission electron microscopy (STEM). The XRD results showed that, with an increase in temperature, the θ-Al2Cu equilibrium gradually dissolved in the matrix. The EDS results of SEM and STEM showed a coarse θ-Al2Cu phase, ultrafine precipitate Al(MnFeSi) or (Mn, Fe)Al6 phase, and atomic clusters in the microstructure. The EBSD results showed that the recrystallization mechanism was dominated by continuous static recrystallization (CSRX), homogeneous nucleation occurred when the sample was heated to near solidus temperature, and CSRX occurred at a semisolid temperature. In the process of recrystallization, the microtexture changed from the preferred orientation to a random orientation. Various experimental results showed that static recrystallization (SRX) occurred at a semisolid temperature due to the blocking effect of atomic clusters on the dislocation slip, and the Zener drag effect of fine precipitates on low-angle grain boundaries (LAGBs) disappeared with melting at a semisolid temperature.