Climate change is altering the environment in which plants grow and survive. An increase in worldwide Earth surface temperatures has been already observed, together with an increase in the intensity of other abiotic stress conditions such as water deficit, high salinity, heavy metal intoxication, etc., generating harmful conditions that destabilize agricultural systems. Stress conditions deeply affect physiological, metabolic and morphological traits of plant roots, essential organs for plant survival as they provide physical anchorage to the soil, water and nutrient uptake, mechanisms for stress avoidance, specific signals to the aerial part and to the biome in the soil, etc. However, most of the work performed until now has been mainly focused on aerial organs and tissues. In this review, we summarize the current knowledge about the effects of different abiotic stress conditions on root molecular and physiological responses. First, we revise the methods used to study these responses (omics and phenotyping techniques). Then, we will outline how environmental stress conditions trigger various signals in roots for allowing plant cells to sense and activate the adaptative responses. Later, we discuss on some of the main regulatory mechanisms controlling root adaptation to stress conditions, the interplay between hormonal regulatory pathways and the global changes on gene expression and protein homeostasis. We will present recent advances on how the root system integrates all these signals to generate different physiological responses, including changes in morphology, long distance signaling and root exudation. Finally, we will discuss the new prospects and challenges in this field.