The response of plants to abiotic stress is complex and involves changes in their morphology, physiology and metabolism. A number of strategies are being followed to enhance the tolerance of abiotic stress conditions, including the development of genetically-engineered varieties containing various gene constructs believed to enhance the performance under stress conditions. Nanotechnology is a versatile field and has found application in almost all the existing fields of science. The application of nanoparticles increased germination and seedling growth, physiological activities including photosynthesis and nitrogen metabolism, leaf activities of CAT, POX and APX, chlorophyll contents, protein, carbohydrate contents and yield, and also positive changes in gene expression indicating their potential use in crop improvement. Nanoparticles enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in plants and showing differential abundance of proteins involved in oxidation-reduction, ROS detoxification, stress signaling, and hormonal pathways. The mobility of the nanoparticles is very high, which leads to rapid transport of the nutrient to all parts of the plant. In particular, the most actual is to find ways to increase the adaptation potential of cultivated plants with the use of nanopreparations in stressful conditions.