Seed germination plays a critical role in determining rice productivity under drought stress. We evaluated 100 traditional rice landraces originated from different agro-ecological zones of Tamil Nadu along with drought- susceptible (IR 64) and drought- tolerant (IR 64 DRT) checks. Moisture stress was induced using PEG 6000 and screening done over a range of osmotic potentials (-) 10 bars, (-) 12.5 bars and (-)15 bars for a period of 5 d. Physio-morphological traits such as germination rate, survival per cent, root and shoot length, vigor index, RS ratio and relative water content (RWC) were assessed during early drought stress. We observed significant changes in the seed macromolecules, phytohormone levels (GA and IAA), osmolytes and antioxidant responses (catalase and superoxide dismutase) between drought stress and control treatments. Kuliyadichan registered significantly higher IAA and GA (44% and 35% respectively over drought tolerant check IR 64 DRT) at drought stress, whereas all the landraces showed an elevated catalase activity. In PC analysis, first three PCs captured 88.93% of the total variation; significant differences were detected among genotypes with respect to the studied parameters. Six traditional landraces such as Kuliyadichan, Rajalakshmi, Sabhagidhan, Nootripathu, Chandaikar and Mallikar were selected and their inherent drought tolerance was associated with metabolic responses viz., triggered hydrolytic enzyme activities, hormonal cross-talk, ROS signaling and catalase under drought stress compared to drought sensitive IR64. Hence, these genotypes can be used as potential donor candidates towards genetic improvement of drought tolerance in rice.