During the last decade, a variety of agricultural drought indices have been developed using soil moisture (SM), or any of its surrogates, as the primary drought indicator. In this study, a comprehensive study of four innovative SM-based indices, the Soil Water Deficit Index (SWDI), the Soil Moisture Agricultural Drought Index (SMADI), the Soil Moisture Deficit Index (SMDI) and the Soil Wetness Deficit Index (SWetDI), is conducted over a large semi-arid crop region in northwest Spain. The indices were computed on a weekly basis from June 2010 to December 2016 using 1-km satellite SM estimations from Soil Moisture and Ocean Salinity (SMOS) and/or Moderate Resolution Imaging Spectroradiometer (MODIS) data. The temporal dynamics of the indices were compared to two well-known agricultural drought indices, the atmospheric water deficit (AWD) and the crop moisture index (CMI), to analyze the levels of similarity, correlation, seasonality and number of weeks with drought. In addition, the spatial distribution and intensities of the indices were assessed under dry and wet SM conditions at the beginning of the growing season. The results showed that the SWDI and SMADI were the appropriate indices for developing an efficient drought monitoring system, with higher significant correlation coefficients (R ≈ 0.5-0.8) when comparing with the AWD and CMI, whereas lower values (R ≤ 0.3) were obtained for the SMDI and SWetDI.